
Chapter 2

Smith Chart

2.1 Definitions
In the loaded transmission line shown in Fig.2.1, the input impedance at a
given position along the line is expressed as:

Zin(ℓ) = Zc
1 + Γ(ℓ)
1 − Γ(ℓ) . (2.1)

Figure 2.1: Loaded transmission line.

To simplify the analysis, we introduce normalized impedance values:

Z̄in(ℓ) = Zin(ℓ)
Zc

, Z̄c = Zc

Zc
= 1 , Z̄L = ZL

Zc
. (2.2)

This allows us to express the normalized input impedance as

Z̄in(ℓ) = Rin

Zc
+ j

Xin

Zc
= Z̄in , (2.3)

which leads to a more compact form

Z̄in = R̄ + jX̄ . (2.4)

Applying equation (2.1) in terms of the normalized impedance

Z̄in = R̄ + jX̄ = 1 + Γ(ℓ)
1 − Γ(ℓ) . (2.5)
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24 CHAPTER 2. SMITH CHART

From this, we can derive the reflection coefficient as:

Γ(ℓ) = Z̄in − 1
Z̄in + 1

, (2.6)

This transformation is known as the "bilinear transformation", which plays
a crucial role in impedance matching and network analysis in RF circuit
design.

2.2 Bilinear Transformation

Bilinear transformation, in general, is defined by the following coupled equa-
tions:

W = Z − 1
Z + 1 , (2.7)

Z = 1 + W

1 − W
(2.8)

where Z = x + jy, and W = u + jv.
From equation (2.4), the normalized input impedance is represented as

Z̄in = R̄ + jX̄. (2.9)

By assuming:
Γ(ℓ) = u + jv, (2.10)

we can substitute Z and W in equations (2.7) and (2.8), respectively.
Inserting equations (2.9) and (2.10) into equation (2.8), we obtain:

R̄ + jX̄ = 1 + u + jv

1 − u − jv
= (1 + u + jv)(1 − u + jv)

(1 − u)2 + v2 . (2.11)

Rearranging, we derive:

R̄ + jX̄ = 1 − u2 − v2

(1 − u)2 + v2 + j
2v

(1 − u)2 + v2 . (2.12)

From this, we identify:

R̄ = 1 − u2 − v2

(1 − u)2 + v2 , (2.13)

X̄ = 2v

(1 − u)2 + v2 . (2.14)

Rewriting equation (2.13), we obtain:

(u − 1)2 + v2 − 2v

X̄
= 0, (2.15)
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or equivalently:

(u − 1)2 +
(

v − 1
X̄

)2
= 1

X̄
, (2.16)

which represents a circle in the uv-plane, commonly referred to as the “con-
stant reactance circle.”

Similarly, equation (2.15) can be rearranged into:(
u − R̄

R̄ + 1

)2

+ v2 = 1
(R̄ + 1)2 . (2.17)

This equation also represents a circle in the uv-plane, known as the “constant
resistance circle.”

2.3 Constant Resistance Circles
"Constant resistance circles" are obtained by plotting (2.17) on the uv-plane
for different values of R̄. Some of the constant resistance circles are shown
in Fig.2.2(a).

2.4 Constant Reactance Circles
"Constant reactance circles" are obtained by plotting (2.16) on the uv-plane
for different values of X̄. Some of the constant reactance circles are shown
in Fig.2.2(b).

Figure 2.2: (a) Constant resistance circles, (b) Constant reactance circles.

From (2.10), Γ(ℓ) = u + jv = ΓLe−2jβℓ for lossless lines, and since
|ΓL| ≤ 1, we are confined in a unit circle. Combining the constant R̄ and X̄
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circles in this unit circle, we obtain what is known as the "Smith Chart", as
shown in Fig.2.3.

Figure 2.3: The Smith chart.

2.5 Mapping

Considering the points A, B, C, D, E and P on the R̄ + jX̄ plane, we want
to map these points on the Smith chart on the uv-plane. The results are
shown in Fig.2.4.

Figure 2.4: Mapping on the Smith chart.
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2.6 VSWR Circles

For lossless lines (or low-loss lines), the VSWR circle is definable. For a
transmission line shown in Fig.2.5, the reflection coefficient is given by

Γ(ℓ) = ρej(θ−2βℓ) (2.18)

Figure 2.5: Lossless transmission line.

Thus, moving along the constant VSWR circle, ρ remains constant, but
Z̄in and (θ − 2βℓ) changes.

As an example, let Z̄L = 0.2 + j0.5 (Ω). First, this point is marked
on the Smith chart, and the constant VSWR circle is drawn with respect
to the center of the chart as shown in Fig.2.6. Moving along the constant
VSWR circle in the clockwise direction is equivalent to moving towards the
generator inside the transmission line.

Figure 2.6: The constant VSWR circle.

It should be noted that across the load, at ℓ = 0, Γ(0) = ΓL = ρejθ, and
since Γ(ℓ) = ρej(θ−2βℓ), as ℓ increases, (θ − 2βℓ) decreases.



28 CHAPTER 2. SMITH CHART

2.7 Reading of VSWR on the Smith Chart

When the constant VSWR circle intersects the real axis, where R̄ > 1, S
(VSWR) is the value of R̄ at that point.

∗ ∗ ∗

Proof:
On the real axis, Zin = R̄ > 1, X̄ = 0, and the VSWR is calculated as:

S = 1 + ρ

1 − ρ
= 1 + |Γ(ℓ)|

1 − |Γ(ℓ)| =
1 + R̄−1

R̄+1

1 − R̄−1
R̄+1

> 0. (2.19)

Since R̄ > 1, the previous expression becomes:

S = R̄ + 1 + R̄ − 1
R̄ + 1 − R̄ + 1

= R̄ . (2.20)

2.8 VSWR for Lossy Lines

For lossy transmission lines, the amplitude of the reflected voltage wave di-
minishes as it propagates along the line. Consequently, the concept of Volt-
age Standing Wave Ratio (VSWR) becomes less meaningful, as the standing
wave pattern is no longer well-defined. On the Smith chart, the VSWR de-
creases as one moves toward the generator, as illustrated in Fig.2.7.

Figure 2.7: VSWR curve for lossy lines.
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2.9 Periphery of the Smith Chart

Consider the transmission line shown in Fig.2.8.

Figure 2.8: Loaded transmission line.

The voltage reflection coefficient is given by:

Γ(ℓ) = ρe−2αℓej(θ−2βℓ), (2.21)

where:

2βℓ = 2 ω

vp
ℓ = 22πf

λf
ℓ. (2.22)

Rearranging,

2βℓ = 4π
ℓ

λ
(radians), (2.23)

where ℓ

λ
is referred to as the "normalized length", or "electrical length".

Equation (2.23) can be converted to degrees as

2βℓ = 4π
ℓ

λ

180
π

= 4ℓ

λ
180 (degrees). (2.24)

Thus, when ℓ varies from 0 to 0.5, 2βℓ varies from 0◦ to 360◦ . This means
that in a lossless transmission line, at every λ/2 interval, Γ(ℓ) and Z̄ repeat
themselves, completing a full rotation around the Smith chart. This periodic
behavior is illustrated in Fig.2.9.
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Figure 2.9: Periphery of the Smith chart.

Additionally, the Smith chart can be used for admittance values. In
other words, it can be converted from an impedance chart to an admittance
chart and vice versa.

2.9.1 Example

A 50 (Ω) air-filled transmission line is terminated with a 100 (Ω) load resis-
tance. Find the load reflection coefficient and the input impedance at ℓ = 50
(cm) away from the load using the Smith chart. Given f = 240 (MHz).

Solution

The problem description is shown in Fig.2.10.

Figure 2.10: Example problem schematics.

In the first step, the load impedance, ZL is normalized:

Z̄L = 100
50 = 2 (Ω). (2.25)

Then, this value is marked on the Smith chart, and the constant VSWR
circle is drawn, as shown in Fig.2.11.
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Figure 2.11: Smith chart solution for Zin.

Next, this point is rotated clockwise along the constant VSWR circle
until a distance of 50 (cm) is traced on the periphery of the Smith chart.
Since the periphery is scaled for normalized lengths, 50 (cm) is normalized
as:

ℓ

λ
= 0.5

5/4 = 2
5 = 0.4, (2.26)

where λ = c/f = (3 × 108)/(240 × 106) = 5/4 (m)=125 (cm).
To rotate by ℓ/λ = 0.4, first, a half of the Smith chart, ℓ/λ = 0.25,

is rotated, and then another ℓ/λ = 0.15 distance is rotated as shown in
Fig.2.11. This is due to the fact that the Smith chart resets at the leftmost
point where ℓ/λ = 0.

At this final location on the VSWR circle, the impedance value on the
Smith chart represents the normalized input impedance observed at 50 (cm)
away from the load. For this example, this value is observed to be Z̄in =
1 + j0.7 (Ω). De-normalizing this value gives

Zin = Z̄inZc = (1 + j0.7) × 50 = 50 + j37 (Ω) (2.27)

which is the same result as in the analytic solution.
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To find ΓL, a vertical line is drawn from the intersection of the constant
VSWR circle with the real axis on the left of the chart as shown in Fig.2.12.
This line crosses the voltage reflection coefficient scale located at the bottom
of the Smith chart. The intersection of the line on this scale gives the value
for the magnitude of the load reflection coefficient, |ΓL| = ρ.

Figure 2.12: Smith chart solution for ΓL = ρejθ.

Finally, it is worth noting that some differences between the analytic
and the Smith chart solutions are acceptable due to inaccuracies in reading
chart values.

ADS Simulations

A frequency-domain simulation (S-parameter simulation) is conducted in
ADS to generate the constant VSWR circle. The parameter θ is varied from
72◦ to 360◦ , corresponding to the points Z̄in = 1 + j0.7 (Ω) and Z̄L = 2 (Ω),
on the Smith chart. The circuit schematics used for this simulation are
shown in Fig. 2.13.

To plot the VSWR circle, the locations of the input impedance Zin and
the load impedance ZL are identified by plotting S11 and S22 on the Smith
chart. The reflection coefficient Γ(ℓ) is then defined and used to determine
the corresponding impedance values Z̄ with respect to a reference impedance
of 50 (Ω). The resulting graph is presented in 2.14.



2.10. ADMITTANCE 33

Figure 2.13: ADS schematics for drawing constant VSWR circle.

Figure 2.14: ADS simulation results: constant VSWR circle.

2.10 Admittance
The normalized impedance is given by:

Z̄ = 1 + Γ(ℓ)
1 − Γ(ℓ) , (2.28)

and the normalized admittance is defined as:

Ȳ = 1
Z̄

= 1 − Γ(ℓ)
1 + Γ(ℓ) (2.29)

This reveals that the reflection coefficient undergoes a sign reversal. In
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practical terms, switching between impedance and admittance values in-
volves multiplying the reflection coefficient by −1, which corresponds to a
θ = 180◦ rotation on the Smith chart (ejπ = −1).

Thus, when applying a 180◦ symmetry to Z̄ on the Smith chart, we
obtain 1

Z̄
= Ȳ , representing the admittance. This relationship is visually

depicted in Fig.2.15.

Figure 2.15: Admittance on the Smith chart.

2.11 Stubs
Stubs are essential components in transmission line engineering, widely used
for impedance matching and reactive tuning. They can be categorized as

− Short-circuited stub – This consists of a transmission line terminated
with a short circuit.

− Open-circuited stub – This is a transmission line with an open-circuit
termination.

− Application in impedance matching – Reactive elements, such as stubs,
are commonly employed to adjust impedance and optimize signal trans-
mission.

2.12 Short-Circuited Transmission Line (Lossless)
Consider a short-circuited transmission line, as illustrated in Fig.2.16.

The input impedance of the transmission line is given by:

Zin = Zc
ZL + jZc tan βℓ

Zc + jZL tan βℓ
. (2.30)
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Figure 2.16: Short-circuited transmission line.

By substituting ZL = 0, we obtain

Zin = jZc tan βℓ . (2.31)

This result shows that Zin is purely reactive. Depending on the electri-
cal length ℓ, the impedance behaves like either an inductor or a capacitor.
Specifically:

– For 0 < ℓ < λ/4, the impedance exhibits inductive characteristics.

– For λ/4 < ℓ < λ/2, the impedance behaves capacitively.

Since the phase constant is β = 2π
λ , we can express the electrical length

as βℓ = 2πℓ
λ . This leads to the following observations:

– tan βℓ > 0 for 0 < ℓ < λ/4, indicating inductive behavior.

– tan βℓ < 0 for λ/4 < ℓ < λ/2, signifying capacitive characteristics.

These impedance variations are illustrated in Fig.2.17.

Figure 2.17: Zin for short circuited transmission line.

To determine the equivalent inductance and capacitance: For 0 < ℓ <
λ/4:

ωLeq = Zc tan βℓ ⇒ Leq is evaluated. (2.32)

For λ/4 < λ < λ/2:

1
ωCeq

= Zc tan βℓ ⇒ Ceq is evaluated. (2.33)
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2.13 Open-Circuited Transmission Line (Lossless)
In the case of an open-circuited transmission line as shown in Fig.2.18, the
input impedance is derived from the general transmission line equation:

Zin = Zc
ZL + jZc tan βℓ

Zc + jZL tan βℓ
. (2.34)

Figure 2.18: Open-circuited transmission line.

By substituting ZL = ∞, the expression simplifies to:

Zin = Zc

j tan βℓ
= −jZc cot βℓ. (2.35)

Thus, the input admittance is given by:

1
Zin

= Yin = jYc tan βℓ , (2.36)

where the characteristic admittance is defined as:

Yc = 1
Zc

(Siemens) (2.37)

is the "characteristic admittance".
The input impedance exhibits capacitive behavior for 0 < ℓ < λ/4,

meaning it acts as a capacitive reactance in this range. Conversely, for
λ/4 < ℓ < λ/2, the impedance becomes inductive. The variation of Zin as
a function of line length ℓ is illustrated in Fig. Fig.2.19.

Figure 2.19: Zin for open circuited transmission line.
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2.14 Problems
1. A 50 (Ω) air-filled transmission line operates without loss and carries a
300 (MHz) sinusoidal signal. The line is terminated with a load impedance
of 20 + j30 (Ω). Using the Smith chart, determine
a. the reflection coefficient at the load.
b. the input impedance at a distance of ℓ = 20 (cm) from the load.

2. Using the Smith chart, calculate the input impedance of a short-circuited,
air-filled stub with a length of 6 (cm) at a frequency of 1 (GHz).
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Chapter 3

Impedance Matching

Impedance matching refers to adjusting a load impedance ZL to meet the
condition:

ZL = Z∗
S , (3.1)

where ZS is the source impedance, connected to ZL.
However, in microwave and RF applications, we are typically matching

a complex load ZL = RL + jXL to a real characteristic impedance Zc of a
transmission line. Since transmission lines can be modeled as having a gen-
erator with an output impedance equal to Zc, the corresponding matching
topology is illustrated in Fig.3.1.

Figure 3.1: Impedance matching in transmission lines.

Thus, Impedance matching ensures maximum power transfer from the
transmission line to the load without any reflections. A general topology for
impedance matching in transmission lines is shown in Fig.3.2.

Figure 3.2: Impedance matching in transmission lines.
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3.1 Quarter-wave and Half-wave Transformers

Consider the transmission line configuration shown in Fig.3.3.

Figure 3.3: Quarter-wave line.

When the line length is ℓ = λ/4, we use the general impedance transfor-
mation equation:

Zin = Zc
ZL + jZc tan βℓ

Zc + jZL tan βℓ
. (3.2)

Substituting βℓ = π/2, i.e., a quarter wavelength, yields:

Zin = Zc
jZc

jZL
= Z2

c

ZL
, (3.3)

or equivalently,
ZinZL = Z2

c . (3.4)

This relationship defines the quarter-wave transformer, which enables impedance
matching between the load and the input by appropriately selecting the
characteristic impedance Zc of the transformer section.

When ℓ = λ/2, we have tan βℓ = tan π = 0, and the equation reduces
to Zin = ZL . This configuration behaves as a 1:1 transformer with phase
reversal, meaning the input and load impedances are identical in magnitude,
but the signal experiences a 180° phase shift.

3.2 Matching Techniques Involving Quarter-wave
Transformers

In the following sections, we examine impedance matching techniques based
on the nature of the load impedance ZL.

3.2.1 Matching a Purely Real Load Impedance

Consider the quarter-wave transformer with characteristic impedance Zcλ,
as illustrated in Fig.3.4. When the load is purely resistive, i.e., ZL = RL,
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Figure 3.4: Quarter-wave transformer.

the input impedance becomes:

Zin = Z2
cλ

ZL
. (3.5)

To achieve a matched condition (Zin = Z0), we select the transformer’s
characteristic impedance as:

Zcλ =
√

ZinZL . (3.6)

This approach ensures maximum power transfer between the source and
load by transforming RL into the system’s characteristic impedance via the
quarter-wave section.

3.2.2 Example

Match 200 (Ω) load resistance to a 50 (Ω) transmission line.

Solution

Since ZL is real, we can use the quarter-wave transformer with a character-
istic impedance

Zcλ =
√

ZinZL =
√

50 × 200 = 100 (Ω). (3.7)

Thus, the following transmission line in Fig.3.5 establishes matching.

Figure 3.5: Solution of the matching problem.
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ADS Simulations

In ADS, the line length is maintained at λ/4, and the characteristic impedance,
Zcλ ∈ [50, 150] (Ω) is varied, as shown in Fig.3.6. The results in Fig.3.7 show
that at the center of the Smith chart, where matching occurs, Zcλ = 100 (Ω)
as expected.

Figure 3.6: ADS schematics for real impedance matching problem.

Figure 3.7: ADS output for real impedance matching problem.
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3.2.3 Matching a Complex Load Impedance Using a Trans-
mission Line and a Quarter-wave Transformer

If ZL is complex, i.e. ZL = RL + jXL, then we can use the following
technique: Use a transmission line section of length ℓ, such that Z ′

in is
purely real as shown in Fig.3.8, then use a λ/4 transformer as before.

Figure 3.8: Quarter-wave transformer matching for a complex load.

3.2.4 Example

Given a load impedance of ZL = 150 − j100 (Ω), match it to a transmission
line with Zc = 50 (Ω) at f = 1 (GHz) using a short transmission line followed
by a quarter-wave transformer.

Solution

We begin by normalizing the load:

Z̄L = ZL

Zc
= 150 − j100

50 = 3 − j2 (Ω). (3.8)

This point is marked on the Smith chart. Drawing a constant VSWR circle
through this point, we move clockwise (toward the generator) along the
circle until we reach the real axis — this corresponds to the point where the
input impedance is purely real. These steps are shown in Fig.3.9.

Next, we mark this point on the Smith chart, and draw a constant VSWR
circle from the center of the chart as shown in Fig.3.9. Moving towards the
generator, we rotate clockwise around the constant VSWR circle until we
intersect the real axis where Zin will be purely real.

Using the outer scale of the Smith chart, we find the length of the trans-
mission line section:

ℓ

λ
= 0.5 − 0.276 = 0.224. (3.9)

Since λ = c/f = 30 (cm), this yields: ℓ = (0.224)(30) = 6.72 (cm).
From the Smith chart, the normalized input impedance at this point is

Z̄ ′
in = 0.22, which de-normalizes to:

Z ′
in = Z̄ ′

inZc = 0.22 × 50 = 11 (Ω). (3.10)
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Figure 3.9: Smith chart solution for complex load matching problem.

To match this impedance to Zc = 50 Ω, we use a quarter-wave trans-
former with:

Zcλ =
√

Z ′
inZc =

√
11 × 50 = 23.45 (Ω). (3.11)

The corresponding length is: ℓcλ = λ/4 = 30/4 = 7.5 (cm).
Thus, the final matching circuit consists of a 6.72 (cm) long transmission

line followed by a 7.5 (cm) quarter-wave transformer with Zcλ = 23.45 (Ω),
as shown in Fig.3.10.

Figure 3.10: The solution of the matching problem with complex ZL.
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ADS Simulations

To observe the simulation results, the analytically determined values are
inserted into the ADS schematic, as shown in Fig.3.11. The corresponding
output is presented in Fig.3.12, showing an input impedance of approxi-
mately Zin ≈ 50 (Ω) and a reflection coefficient Γin = S(1, 1) ≈ 0.

Figure 3.11: ADS schematics of the matching problem with complex ZL.

Figure 3.12: ADS results for the matching problem with complex ZL.

These results confirm successful impedance matching, with a voltage
reflection coefficient magnitude of ρ = |S(1, 1)| = 0.013. The slight devia-
tion from perfect matching arises from rounding and numerical imprecision
inherent in the analytical calculation.

3.2.5 Matching a Complex Load Impedance Using a Short-
circuited Stub and a Quarter-wave Transformer

In this technique, we replace the transmission line segment of length ℓ used
in the previous method with a stub. The stub serves the same function: it
cancels out the reactive component of the input impedance, enabling the
quarter-wave transformer to perform impedance matching to Zc = 50 (Ω).
This topology is illustrated in Fig.3.13.

The stub is connected in parallel, i.e., a shunt connection, with the load
impedance, so that their admittances add to yield the input admittance Y ′

in.
We adjust the stub’s length, ℓ2, until the resulting admittance is purely real.

The load admittance is given by

YL = GL + jBL (S), (3.12)
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Figure 3.13: Alternative matching technique for complex ZL.

where GL is the conductance and BL is the susceptance of the load.
The normalized admittance becomes

ȲL = YL

Yc
, (3.13)

with the characteristic admittance defined as

Yc = 1
Zc

. (3.14)

The normalized total input admittance is the sum of the normalized load
admittance and the stub’s normalized susceptance:

Ȳ ′
in = ȲL + jB̄sc, (3.15)

where jB̄sc represents the reactive input admittance of the short-circuited
stub at the load end.

To achieve a purely real input admittance, we require Ȳ ′
in = ḠL. Sub-

stituting gives:
Ȳ ′

in = ḠL + jB̄L + jB̄sc = ḠL (real). (3.16)

which implies
jB̄L + jB̄sc = 0, (3.17)

Thus,
B̄sc = −B̄L . (3.18)

This equation determines the required stub length ℓ2; we adjust ℓ2 until
(3.18) is satisfied. Finally, the actual load conductance is given by

GL = YcḠL (3.19)

To determine the characteristic impedance for the quarter-wave trans-
former, we apply

Zcλ =
√

Zc
1

GL
. (3.20)
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3.2.6 Example

Given ZL = 150 − j100 (Ω), match this load to a Zc = 50 (Ω) coaxial cable
at f = 1 (GHz), using a stub of length ℓ2, and a quarter-wave transformer
(assume all air-filled transmission lines).

Solution

We start by normalizing the load impedance:

Z̄L = ZL

Zc
= 150 − j100

50 = 3 − j2 (Ω). (3.21)

Then, the corresponding normalized admittance is calculated as:

ȲL = 1
Z̄L

= 1
3 − j2 = 0.23 + j0.15 (S). (3.22)

Since changing ℓ2 does not affect the conductance GL, we move along the
constant-conductance circle on the Smith chart. We continue this motion
until the input admittance becomes: Ȳ ′

in = 0.23 + j0.15 + jB̄sc. To achieve
matching, the stub must provide a susceptance of B̄sc = −0.15.

To determine the stub length ℓ2, we refer to the circuit in Fig.3.14. When
using the Smith chart as an admittance chart, a short circuit corresponds
to the rightmost point. From there, we rotate clockwise along the constant-
conductance circle until we reach the susceptance value B̄sc = −0.15, as
illustrated in Fig.3.15.

Figure 3.14: Finding the stub length, ℓ2.

Thus, the normalized stub length is:

ℓ2
λ

= 0.476 − 0.25 = 0.226. (3.23)

From this, the physical length of the stub becomes:

ℓ2 = 0.226 × 30cm = 6.78 (cm), (3.24)

where the wavelength is taken as λ = 30 (cm).
To determine the normalized input impedance, we compute:

Z̄ ′
in = 1

Ȳ ′
in

= 1
0.23 = 4.35. (3.25)



48 CHAPTER 3. IMPEDANCE MATCHING

Figure 3.15: Matching a complex load using a stub and a quarter-wave
transformer.

Thus, the actual input impedance becomes:

Z ′
in = 4.35 × Zc = 4.35 × 50 = 217.5 (Ω), (3.26)

The characteristic impedance required for the quarter-wave transformer is
then:

Zcλ =
√

Z ′
in × Zc =

√
217.5 × 50 = 104 (Ω). (3.27)

ADS Simulations

The ADS circuit schematic is shown in Fig.3.16, utilizing the values derived
from the analytical solution.

The stub length is converted into degrees as

ℓ2 = 6.78cm × 360◦

λ
= 6.78cm × 360◦

30cm
= 81.36◦

. (3.28)
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Figure 3.16: ADS circuit schematics for the short-circuited stub matching
problem.

Figure 3.17: ADS results for the short-circuited stub matching problem.

The simulation results, displayed in Fig.3.17, confirm that impedance
matching has been achieved, with a reflection coefficient magnitude of ρ =
0.004.

3.3 Matching with a Single Stub and a Variable
Length Line, All Having the Same Zc

Matching sections involving transmission lines with all Zc can be realized
using a variable line of length ℓ1 and a single stub of length ℓ2 as shown in
Fig.3.18.

In this technique, we find the normalize complex load admittance ȲL on
the Smith chart, and move toward the generator (clockwise direction) on
the constant VSWR circle until we intersect the unity conductance circle
(Ȳ = 1). At this point, the input impedance becomes Ȳin = 1 + jB̄in.
Finally, we use a short-circuited stub to cancel the susceptance term so that
the final admittance becomes Ȳ ′

in = 1, and thus, Zin = 50 (Ω).
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Figure 3.18: Matching with a single stub and a variable length line, all
having the same Zc.

3.3.1 Example

Given ZL = 150 − j100 (Ω), match this load to a Zc = 50 (Ω) transmission
line at f = 1 (GHz), using a transmission line of length ℓ1, and a stub of
length ℓ2, all having the characteristics impedance Zc (assume all air-filled
transmission lines).

Solution

We begin by locating the normalized admittance ȲL on the Smith chart. To
do this, we first compute the normalized impedance:

Z̄L = ZL

Zc
= 150 − j100

50 = 3 − j2 (Ω) (3.29)

The point corresponding to ȲL lies diametrically opposite Z̄L on the
same VSWR circle. This position is illustrated in Fig.3.19.

We can either read the value directly from the chart or calculate it:

ȲL = 1
Z̄L

= 1
3 − j2 ≈ 0.23 + j0.15 (S) (3.30)

From this point, we rotate along the constant VSWR circle toward the
generator until intersecting the Ȳ = 1 or Ḡ = 1 circle. At this position, the
line length ℓ1 is:

ℓ1
λ

= 0.18 − 0.025 = 0.155. (3.31)

Thus, the physical length is:

ℓ1 = 0.155 × 30cm = 4.65 (cm). (3.32)

At this new point, the normalized input admittance becomes: Ȳin = 1+j1.64
(S).
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Figure 3.19: Smith chart solution of the matching problem using a single
stub and a variable length line, all having the same Zc.

To cancel the reactive part j1.64, we attach a short-circuited stub in
parallel that supplies a susceptance of B̄sc = −j1.64. Using the Smith chart
admittance view, we start at the short-circuit location (rightmost point) and
rotate clockwise along a constant-conductance circle until reaching B̄sc =
−j1.64. From this, the stub length is:

ℓ2 = (0.338 − 0.25) × λ = 0.088 × 30 = 2.64 (cm). (3.33)

ADS Simulations

We first convert the stub lengths to electrical degrees:
For ℓ1:

ℓ1 = 4.65 × 360
30 = 55.8◦

. (3.34)

For ℓ2:
ℓ2 = 2.64 × 360

30 = 31.68◦
. (3.35)
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The corresponding ADS schematic is shown in Fig.3.20, using the pa-
rameters calculated in the analytical solution.

Figure 3.20: ADS circuit schematics for the short-circuited stub matching
problem using lines with all Zc.

Simulation results, presented in Fig.3.21, show excellent agreement with
the desired characteristic impedance Zc = 50 (Ω), confirming successful
matching.

Figure 3.21: ADS results for the short-circuited stub matching problem
using lines with all Zc.

An alternative matching method using only transmission lines with char-
acteristic impedance Zc, known as double-stub matching, is also available.
However, to maintain clarity and focus, this technique is not covered here.

3.4 LC-Matching
Electronic systems (or circuits) are typically cascaded as shown in Fig.3.22.
To ensure maximum power transfer between each circuit stage, impedance
matching is required — otherwise, energy is wasted across successive blocks.
The condition for maximum power transfer is:

Z0 = Z∗
0 . (3.36)
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Generally, electronic systems (or circuits) are cascaded as shown in
Fig.3.22. When the impedances are purely real (i.e., resistive), this sim-

Figure 3.22: Matching for cascaded systems.

plifies to:

R0 = R0 . (3.37)

In practical scenarios, however, we usually encounter mismatched impedances
— either R ̸= R0 or Z ̸= Z∗

0 . In such cases, we employ an LC matching
circuit to satisfy the condition Z0 = Z∗

0 .
This approach involves using a pair of lumped reactive components —

a capacitor and an inductor — connected in either a series or parallel con-
figuration. Because lumped-element components are used, this technique is
most effective at lower RF frequencies. For higher microwave frequencies,
the transmission line matching methods introduced earlier are more suitable.

In LC matching, we aim to match two real impedances, R11 and R12,
as illustrated in Fig.3.23. In this configuration, R11 > R12 , and the com-
ponents X2 and X3 represent reactances. The element X2 may be either a
capacitor or an inductor, but X3 must be its dual (i.e., an inductor if X2 is
a capacitor, and vice versa).

Figure 3.23: LC-matching topology.

The required values of X2 and X3 can be calculated using:

X2 = ∓
√

R12(R11 − R12) , X3 = ±R11

√
R12

R11 − R12
. (3.38)
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3.4.1 Example

Match a 200 (Ω) load to a 50 (Ω) transmission line using an LC matching
circuit. The operating frequency is 144 (MHz).

Solution

In this case, we have R11 = 200 (Ω), and R12 = 50 (Ω). Using the equations
from (3.38), we first calculate:

X2 = −
√

R12(R11 − R12)

= −
√

50(200 − 50)
= −86.6 (Ω),

(3.39)

and

X3 = R11

√
R12

R11 − R12

= 200
√

50
200 − 50

= 115.47 (Ω).

(3.40)

Since X2 is realized using a capacitor, we can write:

X2 = 86.6 = 1
ωC

, (3.41)

where ω = 2πf . Substituting f = 144 (MHz), we find C=12.7 (pF) ≈ 15
(pF).

Similarly, for X3, if implemented as an inductor:

X3 = 115.47 = ωL, (3.42)

from which we obtain L = 127 (nH) ≈ 120 (nH).

ADS Simulations

The ADS circuit schematics is shown in Fig.3.24. The results are shown in
Fig.3.25, where the reflections at the input are minimum at f = 144 (MHz),
as expected.
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Figure 3.24: LC-matching circuit schematics.

Figure 3.25: LC-matching circuit ADS simulation results.

3.5 Coil Transformer Matching

Transformers composed of wound coils can also be used for impedance
matching. This technique is particularly effective at relatively low RF fre-
quencies, such as in the HF band. At higher frequencies, increased coupling
to surrounding structures makes coil transformer use less practical.

Consider the circuit shown in Fig.3.26, where an ideal transformer is
placed between the source and the load impedance.

Figure 3.26: Transformer matching circuit topology.
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The voltage and current relations for an ideal transformer are:

v1 = v2
a

, (3.43)

and
i1 = ai2, (3.44)

where

a = N2
N1

, (3.45)

and N1 and N2 are the number of turns on the primary and secondary
windings, respectively.

The impedance seen by the source is given by:

Zin = v1
i1

. (3.46)

Substituting (3.43) and (3.44) into (3.46) yields:

Zin = 1
a2

v2
i2

. (3.47)

Recognizing that v2/i2 = ZL, the load impedance, we find:

Zin = 1
a2 ZL . (3.48)

This final expression allows us to calculate the necessary turns ratio (a) for
impedance matching using a transformer.

3.5.1 Example

Match a 200 (Ω) load (antenna) to a 50 (Ω) transmission line using a trans-
former matching circuit. The operating frequency is in the HF band.

Solution

From Equation (3.48):
Zin = 1

a2 ZL. (3.49)

Given ZL = 200 (Ω) and the required Zin = 50 (Ω) for impedance matching,
we solve for (a):

a =
√

200
50 = 2. (3.50)

This implies a turns ratio of N1/N2 = 0.5, which can be realized, for exam-
ple, using N1 = 5 turns and N2 = 10 turns. Using very low turn counts,
such as N1 = 2 and N2 = 1, may result in practical inaccuracies due to
limitations in winding precision and transformer efficiency.
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ADS Simulations

The ADS circuit schematic is shown in Fig.3.27. In the simulation, the
transformer turns ratio is defined as T = N1/N2 and parameterized as
"nvar". The simulation results, presented in Fig.3.28, confirm that opti-
mal impedance matching is achieved at T = 0.5, consistent with theoretical
results.

Figure 3.27: Transformer matching circuit topology.

Figure 3.28: Transformer matching circuit topology.
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Fig.3.29 displays a photo of a 1:2 HF toroidal antenna transformer cor-
responding to this configuration. This transformer is designed for use with
an end-fed half-wave (EFHW) antenna. A coaxial cable connects on one
side, while the antenna’s dipole arms are attached to the connectors on the
opposite end. The total antenna length is tuned to be half the wavelength
of the system’s lowest operating frequency.

Figure 3.29: 1:2 HF antenna transformer (BALUN).

3.6 Problems
1. Match the load impedance ZL = 25 − j50 (Ω) to a transmission line
with characteristic impedance Zc = 50 (Ω) using a series transmission line
section of length ℓ1, followed by a quarter-wave (λ/4) transformer. Assume
the operating frequency is f=1 (GHz). Show your solution on the Smith
chart.

2. Match the load impedance ZL = 25 − j50 Ω to a transmission line with
characteristic impedance Zc = 50Ω using a shunt stub of length ℓ2, followed
by a quarter-wave (λ/4) transformer. Assume the operating frequency is
f=1 (GHz). Show your solution on the Smith chart.

3. Match the load impedance ZL = 25 − j50 Ω to a transmission line
with characteristic impedance Zc = 50 Ω using an LC matching network.
Assume an operating frequency of f=1 (GHz).

4. - Match the load impedance ZL = 25 − j50 Ω to a transmission line
with characteristic impedance Zc = 50 Ω using a coil transformer. Assume
the operating frequency is f=1 (GHz).


